Abstract

We have generalized the BOUND and MOLSCAT packages to allow calculations in basis sets where the monomer Hamiltonians are off diagonal and used this capability to carry out bound-state and scattering calculations on $^{3}\mathrm{He}\text{\ensuremath{-}}\mathrm{NH}$ and $^{4}\mathrm{He}\text{\ensuremath{-}}\mathrm{NH}$ as a function of magnetic field. Following the bound-state energies to the point where they cross thresholds gives very precise predictions of the magnetic fields at which zero-energy Feshbach resonances occur. We have used this to locate and characterize two very narrow Feshbach resonances in $^{3}\mathrm{He}\text{\ensuremath{-}}\mathrm{NH}$. Such resonances can be used to tune elastic and inelastic collision cross sections, and sweeping the magnetic field across them will allow a form of quantum control in which separated atoms and molecules are associated to form complexes. For the first resonance, where only elastic scattering is possible, the scattering length shows a pole as a function of magnetic field and there is a very large peak in the elastic cross section. For the second resonance, however, inelastic scattering is also possible. In this case the pole in the scattering length is dramatically suppressed and the cross sections show relatively small peaks. The peak suppression is expected to be even larger in systems with stronger inelasticity. The results suggest that calculations on ultracold molecular inelastic collisions may be much less sensitive to details of the potential energy surface than has been believed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.