Abstract

The basic ion data such as interaction potential parameters, elastic and inelastic collision cross sections, transport coefficients (reduced mobility and diffusion coefficients) and reaction coefficients have been analysed and determined for the case of He+, N2+, and O2+ in He-dry air mixtures. The ion transport and reaction coefficients have been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer cross sections have been calculated from a semi-classical JWKB (Jeffreys Wentzel Kramers Brillouin) approximation based on a (6-4) rigid core interaction potential model. The inelastic cross sections have been fitted using the measured reaction coefficients, such as, for instance, the non resonant charge transfer coefficients. The cross section sets involving elastic and inelastic processes were then validated using either the measured reduced mobility whenever available in the literature or the zero-field mobility calculated from Satoh’s relation, and potential parameters available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for He+/N2, He+/O2, N2+/He, and O2+/He systems, the ion transport and reaction coefficients were calculated in the pure gases over a wide range of the density reduced electric field E/N. Then, from the present cross section and other literature sets, the ion mobility and the longitudinal and transverse diffusion coefficients were calculated for different concentrations of air in He in the case of He+, N2+, O2+, and also O− ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call