Abstract
It has been suggested that once silicon carbide (SiC) technology overcomes some crystal growth obstacles, superior SiC semiconductor devices would supplant silicon in many high-power applications. However, the property of positive temperature coefficient of breakdown voltage, a behavior crucial to realizing excellent power device reliability, has not been observed in 4H-SiC, which is presently the best-suited SiC polytype for power device implementation. This paper reports the first experimental measurements of stable positive temperature coefficient behavior observed in 4H-SiC pn junction rectifiers. This research indicates that robust 4H-SiC power devices with high breakdown reliability should be achievable after SiC foundries reduce material defects such as micropipes, dislocations, and deep level impurities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have