Abstract

This paper investigates the threshold voltage shift (ΔVTH) induced by positive bias temperature instability (PBTI) in silicon carbide (SiC) power MOSFETs. By analyzing ΔVTH under various gate stress voltages (VGstress) at 150 °C, distinct mechanisms are revealed: (i) trapping in the interface and/or border pre-existing defects and (ii) the creation of oxide defects and/or trapping in spatially deeper oxide states with an activation energy of ~80 meV. Notably, the adoption of different characterization methods highlights the distinct roles of these mechanisms. Moreover, the study demonstrates consistent behavior in permanent ΔVTH degradation across VGstress levels using a power law model. Overall, these findings deepen the understanding of PBTI in SiC MOSFETs, providing insights for reliability optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.