Abstract

Ultra-compact multifunctional integrated photonic modules have great practical significance to photonic integrated circuits (PICs). However, the design effect and efficiency of the existing mainstream inverse design algorithms are incompetent when designing these modules. We analyze their shortcomings in this task, and propose a new, to our knowledge, inverse design algorithm named polygon search (PS) algorithm to address these problems. We utilize the PS algorithm to design an integrated dual-channel mode-conversion-crossing waveguide module. This module integrates three functions: interconversion between TE0 and TE1, interconversion between TE0 and TE2, and channel crossing within only a 4 μm×4 μm footprint, and its performance is verified by experimental testing. It not only greatly reduces the total footprint of many PICs but also greatly improves their fabricating robustness. Furthermore, we propose a PS-designed mode mixer and a PS-designed bending waveguide, and connect them with the integrated modules to form a four-channel crossing-mode-division-multiplexing system. This system can provide multiple modes on the basis of channel crossing and transmit the output signal in the same direction in parallel within a single output waveguide, which significantly increases the communication bandwidth and decreases the footprint of PICs. At last, we demonstrate the effect and efficiency advantages of the PS algorithm over several mainstream inverse design algorithms by a comprehensive contrast experiment and explain these advantages in theory from several perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.