Abstract

We calculate the Gaussian radius parameters of the pion-emitting source in high-energy heavy-ion collisions, assuming a first-order phase transition from a thermalized quark-gluon plasma (QGP) to a gas of hadrons. Such a model leads to a very long-lived dissipative hadronic rescattering phase which dominates the properties of the two-pion correlation functions. The radii are found to depend only weakly on the thermalization time tau(i), the critical temperature Tc (and thus the latent heat), and the specific entropy of the QGP. The model calculations suggest a rapid increase of R(out)/R(side) as a function of KT if a thermalized QGP were formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.