Abstract

Polycyclic aromatic hydrocarbons (PAHs) are persistent and toxic to living organisms, that can be classified as carcinogenic, mutagenic and teratogenic pollutants. In this study, a green photocatalyst of biochar-based graphitic carbon nitride (BC/g-C3N4-M) is derived from sugarcane bagasse (SB) and melamine were developed as a potential material for the degradation of PAHs. BC(SB)/g-C3N4-M prepared with varied ratios of melamine to SB and different synthesis temperature were characterized by FTIR, BET and UV-DRS. The efficiency of the catalyst for the degradation of anthracene were investigated further in terms of its efficiency at various pH mediums, catalyst dosage and anthracene initial concentration. Experimental results revealed that g-C3N4 showed better degradation efficiency to anthracene than BC(SB)/g-C3N4-M. Additionally, the best degradation efficiency of anthracene by g-C3N4 and BC/g-C3N4-M75% composites were found at pH 3 with 1.0 g/L dosage at 2 ppm and 1 ppm initial concentration, respectively. The catalysts were also discovered to be reusable for 5 cycles with a slight decrease in photocatalytic degradation. The use of agricultural biomass waste in this study could provide a promising approach to water and wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call