Abstract

Abstract High lead solders have been used as die-attach and interconnect materials in discrete power packages. Due to the demand of SiC devices serving the high-power market and the harmful effects of Pb to human health and the environment, alternative Pb-free solders, novel bonding materials, as well as solutions have been studied extensively in recent years. The exemption of using high-Pb solders has been extended again to 2021, although it could be terminated at any time if a new technology or material were to be accepted by the industry. This paper presents potential materials and technologies for high-temperature Pb-free die-attachment, focusing on alternative solders. Sintering materials and transient liquid phase bonding (TLPB) materials have been briefly covered as well. AuSn, AuSi, and AuGe solders have shown to be exceptionally high in cost, which limited their application. BiAg- and BiCu-based solders—the BiAgX® family including solder paste, solder wire, and solder preform—improved wetting and exhibited remelting temperatures of 262°C and 270°C, respectively. The acceptable reliability performance on temperature cycling and thermal aging, as well as low material cost, has made them the most competitive candidates for low-power discrete die-attach devices. SnSbAgCu, with well-designed compositions in recent studies, offers a remelting temperature above 320°C. SnSbAgCu is targeted in markets for mid-to-high power devices. Reliability testing for other recently designed SnSbAgCu pastes for various die-attach vehicles is being studied. ZnAl has a remelting temperature above 380°C and an extremely low material cost (comparable to or even lower than the high-lead solders). Although the bonding process is stringent, the excellent thermomechanical behavior and the superior thermal/electrical conductivity have allowed ZnAl to be a potential candidate for high-temperature/high-power die-attach that is competitive with AuSi and AuGe solders. Sintering materials form bonds through solid state interdiffusion, while TLPB materials create a joint through solid-liquid interdiffusion, in which the remelting temperature is enhanced by forming massive IMCs. The desired high thermal/electrical/mechanical/melting performances, as well as the relatively low processing temperature (<350°C), are shining the sintering materials (especially Ag-sintering materials). The intrinsic high porosity (>20%) and the evolution of pores from pressureless sintering may overshadow the reliability. In addition, the immaturity of the processing (time/temperature/pressure/atmosphere/equipment availability, etc.) may deter the industrial adoption of sintering materials. So far, none of these materials or technologies is ideal to satisfy all the requirements of the variety of high-temperature, Pb-free die-attach applications in terms of processing, reliability, and cost. However, each material and solution has the potential to be a niche within this broader categorization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call