Abstract
We present a radix-4 static CMOS full adder circuit that reduces the propagation delay, PDP, and EDP in carry-based adders compared with using a standard radix-2 full adder solution. The improvements are obtained by employing carry look-ahead technique at the transistor level. Spice simulations using 45nm CMOS technology parameters with a power supply voltage of 1.1V indicate that the radix-4 circuit is 24% faster than a 2-bit radix-2 ripple carry adder with slightly larger transistor count, whereas the power consumption is almost the same. A second scheme for radix-2 and radix-4 adders that have a reduced number of transistors in the carry path is also investigated. Simulation results also confirm that the radix-4 adder gives better performance as compared to a standard 2-bit CLA. 32-Bit ripple carry, 2-stage carry select, variable size carry select, and carry skip adders are implemented with the different full adders as building blocks. There are PDP savings, with one exception, for the 32-bit adders in the range 8–18% and EDP savings in the range 21–53% using radix-4 as compared to radix-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.