Abstract
Interconnections problems in the megabit static random access memory (SRAM) chip are studied. A multilayer interconnect capacitance model is developed, and effects of interconnection on SRAM device performance parameters, such as propagation delay, speed, power consumption, and noise characteristics, are analyzed. A case study of 1-Mb SRAM chip interconnection is discussed. A multilayer interconnect approach is proposed to overcome on-chip interconnection difficulties. By implementing a double-layer interconnect approach, the wire length and chip size were reduced to 69% and 58%, respectively. Maximum access time of 30.8 ns with 1 W at 100 degrees C and wafer yield as high as 10% was achieved.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have