Abstract

Tol1 is a DNA-based transposable element identified in the medaka fish Oryzias latipes and a member of the hAT (hobo/Activator/Tam3) transposable element family. Its mobility has already been demonstrated in the human and mouse, in addition to its original host species. This element is thus expected to be useful in a wide range of vertebrates as a genomic manipulation tool. Herein, we show that the Tol1 element can undergo excision in the African clawed frog Xenopus laevis, a major model organism for vertebrate genetics and developmental biology. An indicator plasmid carrying a Tol1 element was injected into 2- or 4-cell-stage embryos together with either a helper plasmid coding for the full-length Tol1 transposase or a modified helper plasmid yielding a truncated protein, and recovered from tailbud-stage embryos. Deletion of the Tol1 region of the indicator plasmid was observed in the experiment with the full-length transposase, and not in the other case. The deletion was associated with various footprint sequences at breakpoints, as frequently observed with many DNA-based transposable elements. These results indicate that the Tol1 element was excised from the indicator plasmid by catalysis of the transposase, and suggest that the Tol1 element is mobile in this frog species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call