Abstract

DNA methylation and epigenetic silencing play important roles in the regulation of transposable elements (TEs) in many eukaryotic genomes. A majority of the maize genome is derived from TEs that can be classified into different orders and families based on their mechanism of transposition and sequence similarity, respectively. TEs themselves are highly methylated and it can be tempting to view them as a single uniform group. However, the analysis of DNA methylation profiles in flanking regions provides evidence for distinct groups of chromatin properties at different TE families. These differences among TE families are reproducible in different tissues and different inbred lines. TE families with varying levels of DNA methylation in flanking regions also show distinct patterns of chromatin accessibility and modifications within the TEs. The differences in the patterns of DNA methylation flanking TE families arise from a combination of non-random insertion preferences of TE families, changes in DNA methylation triggered by the insertion of the TE and subsequent selection pressure. A set of nearly 70,000 TE polymorphisms among four assembled maize genomes were used to monitor the level of DNA methylation at haplotypes with and without the TE insertions. In many cases, TE families with high levels of DNA methylation in flanking sequence are enriched for insertions into highly methylated regions. The majority of the >2,500 TE insertions into unmethylated regions result in changes in DNA methylation in haplotypes with the TE, suggesting the widespread potential for TE insertions to condition altered methylation in conserved regions of the genome. This study highlights the interplay between TEs and the methylome of a major crop species.

Highlights

  • Repetitive regions, mostly derived from transposable elements (TEs), account for the majority of DNA sequence in most crop genomes

  • Like many other crops, has a complex genome that is primarily composed of transposable elements (TEs)

  • There are high abundance families as well as many smaller families of TEs [2,3], with family sizes ranging from 1 to >15,000 in the B73v4 reference genome. These structurally intact maize TEs account for ~65% of the maize genome [2] and estimates based on repeat masking of the maize genome, which are more sensitive for detecting fragments of TEs, suggest that >80% of the maize genome is derived from TEs [4]

Read more

Summary

Introduction

Mostly derived from transposable elements (TEs), account for the majority of DNA sequence in most crop genomes. Class I TEs, known as retrotransposons, utilize an RNA intermediates and many have long terminal repeats (LTRs). There are high abundance families as well as many smaller families of TEs [2,3], with family sizes ranging from 1 to >15,000 in the B73v4 reference genome. These structurally intact maize TEs account for ~65% of the maize genome [2] and estimates based on repeat masking of the maize genome, which are more sensitive for detecting fragments of TEs, suggest that >80% of the maize genome is derived from TEs [4]. Unlike the model plant species Arabidopsis thaliana, TEs in the maize genome are dispersed throughout chromosomes including in gene-rich regions of chromosome arms [4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call