Abstract
Haplotype estimation, or phasing, has gained significant traction in large-scale projects due to its valuable contributions to population genetics, variant analysis, and the creation of reference panels for imputation and phasing of new samples. To scale with the growing number of samples, haplotype estimation methods designed for population scale rely on highly optimized statistical models to phase genotype data, and usually ignore read-level information. Statistical methods excel in resolving common variants, however, they still struggle at rare variants due to the lack of statistical information. In this study we introduce SAPPHIRE, a new method that leverages whole-genome sequencing data to enhance the precision of haplotype calls produced by statistical phasing. SAPPHIRE achieves this by refining haplotype estimates through the realignment of sequencing reads, particularly targeting low-confidence phase calls. Our findings demonstrate that SAPPHIRE significantly enhances the accuracy of haplotypes obtained from state of the art methods and also provides the subset of phase calls that are validated by sequencing reads. Finally, we show that our method scales to large data sets by its successful application to the extensive 3.6 Petabytes of sequencing data of the last UK Biobank 200,031 sample release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.