Abstract
The desire to combine properties such as ready availability, low price and biodegradability makes cellulose derivatives such as Trimethylsilyl cellulose (TMSC) an ideal precursor suited to study different applications on the abundant material, cellulose. Here we introduce a lithographic approach to pattern the cellulose derivative, TMSC, via photoinduced X-ray conversion. Thin films of this biopolymer were irradiated by means of proximity deep X-ray lithography. With increasing energy dose, we found distinct structural and chemical changes resulting in two polarity transitions and related thereto material solubility alterations. Based on this, we demonstrate that positive and negative tone structures can be obtained in one single exposure at the same energy dose. Notably, the positive tone pattern is produced when applying Isopropyl alcohol (IPA) or purified water to dissolve the exposed surface. In contrast, the negative tone structure is produced with toluene. These findings suggest TMSC as a potential dual-tone photoresist applicable in microelectronics or surface chemistry where it can be applied as a dielectric layer, a pattern template, used in microfluidics or functionalized for bioassays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.