Abstract
AbstractThe liquid‐crystalline properties of three cellulose esters, phenylacetoxy cellulose (PAC), 4‐methoxyphenylacetoxy cellulose (4MPAC), and p‐tolylacetoxy cellulose (TAC) and two cellulose silyl ethers, trimethyl silyl cellulose (TMSC) and t‐butyldimethylsilyl cellulose (TBDMSC), are reported.Hot‐stage polarized light microscopy provided evidence regarding the formation of thermotropic mesophases in the PAC, 4MPAC, TAC, and TMSC in bulk form upon heating. The concomitant DSC data showed further evidence of the thermotropic nature of these materials.PAC, 4MPAC, TAC, and TMSC formed lyotropic mesophases at 44, 48, 50, and 27 wt%, respectively in CH2Cl2. The presence of fingerprint patterns in wholly anisotropic solutions in conjunction with optical rotation measurements confirmed the cholesteric nature of these liquid crystalline solutions. TBDMSC formed neither a lyotropic nor a thermotropic liquid‐crystalline phase due to the low degree of substitution (DS 0.68) of this derivative. The hydroxyl substituents of PAC, 4MPAC, TAC, and TMSC may be readily removed under mild conditions to regenerate cellulose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.