Abstract
We present the use of a finite difference method based on Crank-Nicholson scheme and recurrence scheme for computationally efficient simulation of the X-ray propagation through a zone plate. By introducing boundary and central conditions and by avoiding large matrix operations, the method achieves considerable speed, little memory occupation and low background noise. Accommodating refractive index profiles of arbitrary shape, it can be applied to assist optimizing X-ray zone plates and understanding focusing mechanism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have