Abstract
In the Motion Planning research field, heuristic methods have demonstrated to outperform classical approaches gaining popularity in the last 35 years. Several ideas have been proposed to overcome the complex nature of this NP-Complete problem. Ant Colony Optimization algorithms are heuristic methods that have been successfully used to deal with this kind of problems. This paper presents a novel proposal to solve the problem of path planning for mobile robots based on Simple Ant Colony Optimization Meta-Heuristic (SACO-MH). The new method was named SACOdm, where d stands for distance and m for memory. In SACOdm, the decision making process is influenced by the existing distance between the source and target nodes; moreover the ants can remember the visited nodes. The new added features give a speed up around 10 in many cases. The selection of the optimal path relies in the criterion of a Fuzzy Inference System, which is adjusted using a Simple Tuning Algorithm. The path planner application has two operating modes, one is for virtual environments, and the second one works with a real mobile robot using wireless communication. Both operating modes are global planners for plain terrain and support static and dynamic obstacle avoidance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.