Abstract
Rerandomization discards assignments with covariates unbalanced in the treatment and control groups to improve estimation and inference efficiency. However, the acceptance-rejection sampling method used in rerandomization is computationally inefficient. As a result, it is time-consuming for rerandomization to draw numerous independent assignments, which are necessary for performing Fisher randomization tests and constructing randomization-based confidence intervals. To address this problem, we propose a pair-switching rerandomization (PSRR) method to draw balanced assignments efficiently. We obtain the unbiasedness and variance reduction of the difference-in-means estimator and show that the Fisher randomization tests are valid under PSRR. Moreover, we propose an exact approach to invert Fisher randomization tests to confidence intervals, which is faster than the existing methods. In addition, our method is applicable to both nonsequentially and sequentially randomized experiments. We conduct comprehensive simulation studies to compare the finite-sample performance of the proposed method with that of classical rerandomization. Simulation results indicate that PSRR leads to comparable power of Fisher randomization tests and is 3-23 times faster than classical rerandomization. Finally, we apply the PSRR method to analyze two clinical trial datasets, both of which demonstrate the advantages of ourmethod.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.