Abstract

Mouse-tracking data, which record computer mouse trajectories while participants perform an experimental task, provide valuable insights into subjects' underlying cognitive processes. Neuroscientists are interested in clustering the subjects' responses during computer mouse-tracking tasks to reveal patterns of individual decision-making behaviors and identify population subgroups with similar neurobehavioral responses. These data can be combined with neuroimaging data to provide additional information for personalized interventions. In this article, we develop a novel hierarchical shrinkage partition (HSP) prior for clustering summary statistics derived from the trajectories of mouse-tracking data. The HSP model defines a subjects' cluster as a set of subjects that gives rise to more similar (rather than identical) nested partitions of the conditions. The proposed model can incorporate prior information about the partitioning of either subjects or conditions to facilitate clustering, and it allows for deviations of the nested partitions within each subject group. These features distinguish the HSP model from other bi-clustering methods that typically create identical nested partitions of conditions within a subject group. Furthermore, it differs from existing nested clustering methods, which define clusters based on common parameters in the sampling model and identify subject groups by different distributions. We illustrate the unique features of the HSP model on a mouse tracking dataset from a pilot study and in simulation studies. Our results show the ability and effectiveness of the proposed exploratory framework in clustering and revealing possible different behavioral patterns across subject groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.