Abstract

Correlated outcomes are common in many practical problems. In some settings, one outcome is of particular interest, and others are auxiliary. To leverage information shared by all the outcomes, traditional multi-task learning (MTL) minimizes an averaged loss function over all the outcomes, which may lead to biased estimation for the target outcome, especially when the MTL model is misspecified. In this work, based on a decomposition of estimation bias into two types, within-subspace and against-subspace, we develop a robust transfer learning approach to estimating a high-dimensional linear decision rule for the outcome of interest with the presence of auxiliary outcomes. The proposed method includes an MTL step using all outcomes to gain efficiency and a subsequent calibration step using only the outcome of interest to correct both types of biases. We show that the final estimator can achieve a lower estimation error than the one using only the single outcome of interest. Simulations and real data analysis are conducted to justify the superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.