Abstract
Beta1-adrenergic receptor autoantibodies (β1-AAbs) promote atrial remodelling and ultimately lead to the development of atrial fibrillation (AF). Oroxin B is a natural flavonoid glycoside with a variety of biological activities, including anti-inflammatory and autophagy-promoting effects, and has therapeutic benefits for a variety of diseases. The aim of this study was to investigate the potential therapeutic role of Oroxin B in the development of β1-AAb-induced atrial fibrillation and to elucidate the underlying mechanisms involved. We established a rat model of β1-AAb-induced atrial fibrillation via active immunisation. The first stage was divided into three groups: the control group, the β1-AAb group and the β1-AAb + bisoprolol group. The second stage was divided into three groups: the control group, the β1-AAb group and the β1-AAb + Oroxin B group. Serum levels of β1-AAbs, atrial tissue levels of cyclic monophosphate (cAMP), atrial electrophysiological parameters, cardiac structure and function, mitochondrial structure, autophagy levels, cardiomyocyte apoptosis and myocardial fibrosis were examined. The results showed that bisoprolol, a β1-blocker, improved β1-AAb-induced atrial electrical remodelling, reduced atrial collagen deposition, ameliorated the increase in LAD and regulated the balance of autophagy and apoptosis in atrial myocytes through the PTEN/AKT/mTOR signalling pathway. Oroxin B, a PTEN agonist, can improve the impairment of autophagy homeostasis and apoptosis in atrial tissue by activating the PTEN/AKT/mTOR signalling pathway, thereby improving atrial structure and electrical remodelling. Moreover, Oroxin B may play a therapeutic role in β1AAb-induced atrial fibrillation. In conclusion, our results demonstrate the potential therapeutic role of Oroxin B in β1AAb-induced atrial fibrillation and the underlying mechanisms, suggesting that Oroxin B may be an effective antiarrhythmic medication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Clinical and experimental pharmacology & physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.