Abstract

Atrial structural and electrical remodelling play important roles in atrial fibrillation (AF). Sacubitril/valsartan attenuates cardiac remodelling in heart failure. However, the effect of sacubitril/valsartan on AF is unclear. The aim of this study was to evaluate the effect of sacubitril/valsartan on atrial electrical and structural remodelling in AF and investigate the underlying mechanism of action.Thirty-three rabbits were randomized into sham, RAP, and sac/val groups. HL-1 cells were subjected to control treatment or rapid pacing with or without LBQ657 and valsartan. Echocardiography, atrial electrophysiology, and histological examination were performed. The concentration of Ca2+ and expression levels of calcineurin, NFAT, p-NFAT, Cav1.2, collagen Ⅰ and Ⅲ, ANP, BNP, CNP, NT-proBNP, and ST2 in HL-1 cells, and IcaL in left atrial cells, were determined.We observed that compared to that in the sham group, the atrium and right ventricle were enlarged, myocardial fibrosis was markedly higher, AF inducibility was significantly elevated, and atrial effective refractory periods were shortened in the RAP group. These effects were significantly reversed by sacubitril/valsartan. Compared to that in the sham group, collagen Ⅰ and Ⅲ, NT-proBNP, ST2, calcineurin, and NFAT were significantly up-regulated, while p-NFAT and Cav1.2 were down-regulated in the RAP group, and sacubitril/valsartan inhibited these changes. Ca2+ concentration increased and ICaL density decreased in in vivo and in vitro AF models, reversed by sacubitril/valsartan.Sacubitril/valsartan attenuates atrial electrical remodelling and ameliorates structure remodelling in AF. This study paves the way for the possibility of clinical use of sacubitril/valsartan in AF patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call