Abstract
A formation process for ordered, self-organized cobalt (Co) nanodots in diamond-like carbon (DLC) thin films deposited by magnetron sputtering in a plasma-assisted Ar/CH4 discharge is presented. episilon-Co dots -5 nm in diameter, separated by 1-2 nm DLC boundaries and arranged in hexagonal arrays were produced on Si substrates. The formation mechanism relies on a self-organization process which is based on surface energy minimization and local magnetic field interaction. The proposed plasma-assisted process presents a controlled and cost-effective bottom-up nanofabrication approach for the production of well-ordered magnetic nanodots based on self-organization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.