Abstract

Hydrogen plays a crucial role in the growth of micro-crystalline diamond (MCD) and diamond like carbon (DLC) thin films grown by plasma assisted chemical vapour deposition (PACVD) processes. It selectively etches graphite phase and helps in stabilizing the diamond phase. The presence of various hydrocarbon species in the plasma and their reaction with atomic, excited or molecular hydrogen on the substrate surface decide the mechanism of diamond nucleation and growth. Several mechanisms have been proposed but the process is still not well understood.Control of hydrogen and other deposition parameters in the PACVD process leads to deposition of yet another class of materials called diamond like carbon. By varying the concentration of hydrogen it is possible to produce purely amorphous carbon films on the one hand and amorphous hydrogenated carbon films (with as high as 60% hydrogen) on the other. Very hard, optically transparent and electrically insulating films characterize the diamond like behaviour. The proportion of hydrogen and its bonding with carbon or hydrogen in the film can be varied to obtain very hard to very soft films which could be optically transparent or opaque. The microstructure of these films have been investigated by a large number of techniques. The results show interesting situations.This paper reviews the work on the role of hydrogen on the growth, structure and properties of MCD and DLC thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.