Abstract
AbstractPre-treatment is a process that releases simple sugars from complex lignocellulosic biomass by using chemicals like acid and alkali which are one of the simplest and cost effective techniques. In this study, the conditions for sulphuric acid and sodium hydroxide pretreatment of de-oiled oil seed cake (DOSC) were optimized by response surface methodology (RSM). The levels of factors (DOSC concentration, agitation speed, sulphuric acid (H2SO4), sodium hydroxide (NaOH) concentration and reaction time) that affect release of reducing sugars by pre-treatment were obtained by one factor at a time (OFAT) approach of which only H2SO4 concentration, NaOH concentration and reaction time showed significance. The levels of factors were optimized by central composite design. Optimized conditions were found to be 11.65% (v/v) of H2SO4 concentration at 1.28h and, 4 N of NaOH at 3.7 h for acid and alkali hydrolysis respectively. Under optimized conditions, the release of reducing sugars was found to be 0.69 g/L (41.36 mg RRS/ g cellulose) and 0.40 g/L (23.98 mg RRS/ g cellulose) for acid hydrolysis and alkali hydrolysis of DOSC, respectively. Hence, RSM was found to be an efficient technique to optimize the hydrolysis process and ensure maximum release of reducing sugars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.