Abstract
In this study, we present a formal definition of the probabilistic digital twin (PDT). Digital twins are emerging in many industries, typically consisting of simulation models and data associated with a specific physical system. In order to define probabilistic digital twins, we discuss how epistemic uncertainty can be treated using measure theory, by modelling epistemic information via sigma-algebras. A gentle introduction to the necessary mathematical theory is provided throughout the paper, together with a number of examples to illustrate the core concepts. We then introduce the problem of optimal sequential decision making. That is, when the outcome of each decision may inform the next. We discuss how this problem may be solved theoretically, and the current limitations that prohibit most practical applications. As a numerically tractable alternative, we propose a generic approximate solution using deep reinforcement learning together with neural networks defined on sets. We illustrate the method on a practical problem, considering optimal information gathering for the estimation of a failure probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.