Abstract
Micro-grids (MGs) are small parts of the electrical power system that work along with the electric system or autonomously based on environmental or economic conditions. The renewable-based distributed generators (RDGs) and electric vehicle charging stations (EVCSs) are wildly incorporated in MGs. Optimal day-ahead scheduling of the MG is ahead corner of energy management for cost reduction. In addition, solving the economic load dispatch and day-ahead scheduling of the MG is a complex optimisation problem, especially considering the RDGs, EVCS, and uncertainties in the electrical system. This paper aims to optimise the day-ahead scheduling of the MG with and without a smart charging strategy for electric vehicles. An enhanced manta-ray foraging optimisation (EMRFO) algorithm is proposed to solve this optimisation problem. EMRFO depends upon boosting population diversity and the searching ability of the standard MRFO using strategies. The proposed strategies are based on quasi-oppositional-based learning and local chaotic mutation. The studied MG consists of wind turbines, fuel cells, and diesel generators. The day-ahead scheduling of the MG is solved with and without considering the uncertainties of the load demand and the wind speed. The proposed algorithm for day-ahead scheduling of the MG is compared to well-known algorithms such as anti lion optimisation, particle swarm optimisation, whale optimisation algorithm, sine cosine algorithm, and harmony search algorithm. The simulation results demonstrate that the proposed algorithm is superior to these algorithms for solving the optimisation problem. The results show that the generation cost is reduced considerably from 77,745.61 $ to 76,984.2 $ by applying the smart operation strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.