Abstract
Weak almost contact metric manifolds, i.e., the linear complex structure on the contact distribution is replaced by a nonsingular skew-symmetric tensor, defined by the author and R. Wolak (2022), allowed a new look at the theory of contact manifolds. This paper studies the curvature and topology of new structures of this type, called the weak nearly cosymplectic structure and weak nearly Kähler structure. We find conditions under which weak nearly cosymplectic manifolds become Riemannian products and characterize 5-dimensional weak nearly cosymplectic manifolds. Our theorems generalize results by H. Endo (2005) and A. Nicola–G. Dileo–I. Yudin (2018) to the context of weak almost contact geometry.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have