Abstract

This paper reports a detailed experimental and simulation study of the electron mobility enhancement induced by the biaxial strain in (0 0 1) silicon MOSFETs. To this purpose, ad hoc test structures have been fabricated on strained Si films grown on different SiGe virtual substrates and the effective mobility of the electrons has been extracted. To interpret the experimental results, we performed simulations using numerical solutions of Schroedinger–Poisson equations to calculate the charge and the momentum relaxation time approximation to calculate the mobility. The mobility enhancement with respect to the unstrained Si device has been analyzed as a function of the Ge content of SiGe substrates and of the operation temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.