Abstract

Entropy generation of 3D cross sections circular, square, and hexagon shapes microchannel heat sinks (MCHS) were numerically performed. The governing equations (continuity, momentum and energy) along with the boundary conditions and the study state conjugate heat transfer problem were solved using the finite volume method (FVM). The Reynolds number in the range of 100 to 1600 and heat flux of 125, 150, 175 and 200 kW/m2 were covered in this study. The overall entropy generation rate and entropy generation number are obtained by integrating the volumetric rate components over the entire heat sink. The results indicated that entropy generation decreases with increases of the Reynolds number. Decreasing the heat flux led to decreasing entropy generation. The square microchannel heat sink has the lowest entropy generation and entropy generation number

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call