Abstract
Stabilized heavy metals-containing phases and low chlorine utilization limit heavy metals chlorination reactions. The traditional method of adding chlorinating agents can promote heavy metals chlorination volatilization, but the limiting factor has not been resolved and more chlorides are emitted. Herein, a new reaction pathway to promote heavy metals chlorination volatilization through the transformation of stabilized heavy metals-containing phases and chlorine species by the addition of biomass at the sintering is first reported. The Cu volatilization efficiency increased sharply from 50.50% to 93.21% compared with the control, Zn, Pb, and Cd were nearly completely volatilized. Results show that the biomass carbonization process was more important for Cu chlorination volatilization. Stabilized heavy metals-containing phases were converted from Cu2S to CuO and Cu2O with the biochar and oxygen, increasing the activity of Cu. The chlorine species KCl reacted with CH3-containing groups to form CH3Cl, which reacted with CuO with a lower Delta G than HCl and Cl2, increasing the tendency for the conversion of CuO to CuCl. Cu chlorination volatilization process, following shrinking core kinetic model and controlled by chemical reactions. The outcomes fundamentally addresses the limiting step for heavy metals chlorination volatilization, supporting the incineration fly ash harmless treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.