Abstract

AbstractThe design of new organic materials for redox‐flow batteries is an actively developing topic in the field of energy storage. Herein, two novel redox‐active organic molecules were presented, based on benzoxadiazole and benzothiadiazole cores bearing ethylene glycol substituents, which were first synthesized and evaluated as anolytes in nonaqueous all organic redox flow batteries. These two molecules were compared with their unsubstituted analogs in terms of electrochemistry, solubility and RFB cycling behavior. Substituted benzoxadiazole and benzothiadiazole possess low redox potentials near −2.1 V vs. Fc/Fc+, increased solubility in organic solvents, reduced permeability through the membrane and higher stability under charge‐discharge cycling in laboratory RFB cells than unsubstituted counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.