Abstract
Azobenzene (azoB) is a promising anode active material for nonaqueous redox flow battery (NARFB), but the battery performance assembled with azoB is rather poor. Here, we show that the rate performance of NARFB with azoB and 2,5-di-tert-butyl-1-methoxy-4-[2′-methoxyethoxy] benzene (DBMMB) as anolyte and catholyte active materials can be significantly enhanced by optimizing the solvent, supporting electrolyte, and membrane. The synergistic interaction among active materials, solvent (acetonitrile), supporting electrolyte (tetraethylammonium bis(trifluoromethylsulfonyl)imide), and membrane (Daramic 175) contributes to the high battery performance. It exhibits an energy efficiency of 63.5% even at an ultra-high current density of 100 mA cm−2. Furthermore, the battery delivers a peak power density of 336 mW cm−2 at the current density of 240 mA cm−2 with 0.25 M active materials, which is a new benchmark for NARFBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.