Abstract

Nonaqueous redox flow batteries are promising in pursuit of high energy density storage systems owing to the broad voltage windows (>2 V) but currently are facing key challenges such as limited cyclability and rate performance. To address these technical hurdles, here we report the nonaqueous organic flow battery chemistry based on N-methylphthalimide anolyte and 2,5-di-tert-butyl-1-methoxy-4-[2′-methoxyethoxy]benzene catholyte, which harvests a theoretical cell voltage of 2.30 V. The redox flow chemistry exhibits excellent cycling stability under both cyclic voltammetry and flow cell tests upon repeated cycling. A series of Daramic and Celgard porous separators are evaluated in this organic flow battery, which enable the cells to be operated at greatly improved current densities as high as 50 mA cm–2 compared to those of other nonaqueous flow systems. The stable cyclability and high-current operations of the organic flow battery system represent significant progress in the development of promising nonaqu...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call