Abstract

The process of heat conduction in a chain with a periodic potential of nearest-neighbor interaction is investigated by means of molecular dynamics simulation. It is demonstrated that the periodic potential of nearest-neighbor interaction allows one to obtain normal heat conductivity in an isolated one-dimensional chain with conserved momentum. The system exhibits a transition from infinite to normal heat conductivity with the growth of its temperature. The physical reason for normal heat conductivity is the excitation of high-frequency stationary localized rotational modes. These modes absorb the momentum and facilitate locking of the heat flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.