Abstract

The ding-a-ling model is a kind of half lattice and half hard-point-gas (HPG) model. The original ding-a-ling model proposed by Casati etal. does not conserve total momentum and has been found to exhibit normal heat conduction behavior. Recently, a modified ding-a-ling model which conserves total momentum has been studied and normal heat conduction has also been claimed. In this work, we propose a full-lattice ding-a-ling model without hard point collisions where total momentum is also conserved. We investigate the heat conduction and energy diffusion of this full-lattice ding-a-ling model with three different nonlinear inter-particle potential forms. For symmetrical potential lattices, the thermal conductivities diverges with lattice length and their energy diffusions are superdiffusive signaturing anomalous heat conduction. For asymmetrical potential lattices, although the thermal conductivity seems to converge as the length increases, the energy diffusion is definitely deviating from normal diffusion behavior indicating anomalous heat conduction as well. No normal heat conduction behavior can be found for the full-lattice ding-a-ling model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.