Abstract

The nonvolatile memory transistor devices with embedded ruthenium (Ru) nanocrystals (NCs) are fabricated in a compatible way with conventional complementary metal-oxide semiconductor technology. The rapid thermal annealing for the whole gate stacks is used to form Ru NCs in pre-existed SiO2 matrix. Monocrystal Ru NCs with high density (3×1012 cm−2), small size (2–3 nm), and good uniformity both in spatial distribution and morphology are elaborated. A substantial memory window of 3.5 V is obtained and explained by the charging and effects of Ru NCs. The mechanisms of work function engineering are also discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.