Abstract

Ruthenium (Ru) nanocrystals (NCs) embedded in SiO2 gate stacks are formed by rapid thermal annealing for the whole gate stacks and embedded in the memory structure, which is compatible with conventional CMOS technology. The devices exhibit a substantial and clockwise hysteresis in capacitance-voltage measurement. The Ru NCs exhibit high density (2 × 1012 cm−2), small size (2–4nm) and good uniformity both in spatial distribution and morphology. The charging and long-term retention performances are explained by the Coulomb Blockade phenomena and the asymmetric electron tunnel barrier between the Ru NCs and the Si substrate, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.