Abstract

In vivo identification of viable and thermally coagulated blood in a burn wound can be used to profile the type, extent, and site of the burn, thus assisting the removal of necrotic tissue in preparation for skin grafts. Recently, intensive research on photoacoustic imaging (PAI) has been conducted to evaluate burn injury. However, most PAI systems usually take the approach of direct physical contact of an acoustic detector or an impedance matching medium with the vulnerable burned skin, which exposes significant limitations on the diagnosis of burn injuries. Here, we present a noncontact PAI system, based on a custom designed air-coupled ultrasonic transducer, enabling in vivo noncontact vasculature to be imaged without contrast agents. Using the natural difference in light absorption between coagulated and non-coagulated blood at the wavelength of 532 nm, this PAI system possesses an immanent advantage to discriminate viable and thermally coagulated blood in burned tissues. Phantom experiments and burned rabbit's skin imaging have been implemented to demonstrate that the noncontact PAI technique could be valuable in the adjuvant diagnosis and observation of burns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call