Abstract

To perform ultrasound imaging using an array transducer, a focused ultrasound beam is transmitted in a particular direction within the tissue and the received backscattered ultrasound wave is then dynamically focused at every position along the beam. The ultrasound beam is scanned over the desired region to form an image. The photoacoustic imaging, however, is distinct from conventional ultrasound imaging. In photoacoustic imaging the acoustic transients are generated simultaneously in the entire volume of the irradiated tissue - no transmit focusing is possible due to light scattering in the tissue. The photoacoustic waves are then recorded on every element of the ultrasound transducer array at once and processed to form an image. Therefore, compared to ultrasound imaging, photoacoustic imaging can utilize dynamic receive focusing only. In this paper, we describe the image formation algorithms of the array-based photoacoustic and ultrasound imaging system and present methods to improve the quality of photoacoustic images. To evaluate the performance of photoacoustic imaging using an array transducer, numerical simulations and phantom experiments were performed. First, to evaluate spatial resolution, a point source was imaged using a combined ultrasound and photoacoustic imaging system. Next, image quality was assessed by imaging tissue imaging phantoms containing a circular inclusion. Finally, the photoacoustic and ultrasound images from the combined imaging system were analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call