Abstract

Processing of milk involves heating, which can modify the structure and digestibility of its proteins. In vitro models are useful for studying protein digestion. However, validating these models with in vivo data is challenging. Here, we non-invasively monitor in vitro gastric milk protein digestion by protein-water chemical exchange detected by 1H nuclear magnetic resonance (NMR) magnetization transfer (MT). We obtained either a fitted composite exchange rate (CER) with a relative standard error of ≤10% or the MT ratio (MTR) of the intensity without or with an off-resonance saturation pulse, from just a single spectral acquisition. Both CER and MTR, affected by the variation in the amount of semi-solid protons, decreased during in vitro gastric digestion in agreement with standard protein content analyses. The decrease was slower in heated milk, indicating slower breakdown of the coagulum. Our results open the way to future quantification of protein digestion in vivo by MRI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.