Abstract

In this paper, we present a new generic architectural approach of a Self-Organizing Map (SOM). The proposed architecture, called the Diagonal-SOM (D-SOM), is described as an Hardware–Description-Language as an intellectual property kernel with easily adjustable parameters.The D-SOM architecture is based on a generic formalism that exploits two levels of the nested parallelism of neurons and connections. This solution is therefore considered as a system based on the cooperation of a distributed set of independent computations. The organization and structure of these calculations process an oriented data flow in order to find a better treatment distribution between different neuroprocessors. To validate the D-SOM architecture, we evaluate the performance of several SOM network architectures after their integration on a Xilinx Virtex-7 Field Programmable Gate Array support. The proposed solution allows the easy adaptation of learning to a large number of SOM topologies without any considerable design effort. [Formula: see text] SOM hardware is validated through FPGA implementation, where temporal performance is almost twice as fast as that obtained in the recent literature. The suggested D-SOM architecture is also validated through simulation on variable-sized SOM networks applied to color vector quantization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.