Abstract
A borohydride fuel cell has been constructed using a platinized multiwalled carbon nanotube (MWCNT) anode and an air cathode having an anionic exchange membrane separating the anode and cathode. The MWCNT was functionalized with carboxylic acid under nitric acid reflux. Platinum metal was subsequently incorporated into it by galvanostatic deposition. The platinized functionalized MWCNT was characterized by thermogravimetric analysis, Fourier transform infrared spectrum, scanning electron microscope and X-ray diffraction. The fuel cell produced a voltage of 0.95 V at low currents and a maximum power density of 44 mW cm −2 at room temperature in 10% sodium borohydride in a 4 M sodium hydroxide medium. Another borohydride fuel cell under identical conditions using carbon as the anode produced a cell voltage of 0.90 V and power density of about 20 mW cm −2. The improved performance of the MWCNT is attributed to the higher effective surface area and catalytic activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have