Abstract
Electrode cracks in polymer electrolyte membrane fuel cells (PEMFCs) are correlated with early onset failures. In this work we investigate the influence of cracked gas diffusion electrodes (GDEs) on the durability of the membrane electrode assembly (MEA) using a combined chemical-mechanical accelerated stress test (AST). Electrode crack dimensions were systematically tuned using ink formulations and material selection strategies. A parameter to describe the crack width areal density (ΦCW) was used to quantify the degree of discontinuity in the electrode surfaces. Open circuit voltage (OCV) transient analyses were used to benchmark and characterize the failure mechanisms in the MEAs as a function of the ΦCW. While smaller electrode-level cracks, on the order of microns, yielded a 28 % decrease in operating lifetime, larger cracks that propagated from a discontinuous, microporous layer (MPL) coating, decreased the operating lifetime by 56 %. This work emphasizes the need for material processing strategies that consider defect tolerances to limit membrane failures in PEMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.