Abstract
AbstractIn this paper we give a necessary and sufficient condition for the discrete Jensen inequality to be satisfied for real (not necessarily nonnegative) weights. The result generalizes and completes the classical Jensen–Steffensen inequality. The validity of the strict inequality is studied. As applications, we first give the form of our result for strongly convex functions, then we study discrete quasi-arithmetic means with real (not necessarily nonnegative) weights, and finally we refine the inequality obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.