Abstract

We present an algorithm which calculates a minimum cut and its weight in an undirected graph with nonnegative real edge weights, n vertices and m edges, in time O(max(log n, min(m/n,δG/e)) n2), where e is the minimal edge weight, and δG is the minimal weighted degree. For integer edge weights this time is further improved to O(δG n2) and O(λG n2). In both cases these bounds are improvements of the previously known best bounds of deterministic algorithms. These were O(nm + n2 log n) for real edge weights and O(nM + n2) and O(M + λG n2) for integer weights, where M is the sum of all edge weights.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call