Abstract

We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an $n\times n$ 0-1 matrix $C,$ let $K_{C}$ be the complete weighted graph on the rows of $C$ where the weight of an edge between two rows is equal to their Hamming distance. Let $MWT(C)$ be the weight of a minimum weight spanning tree of $K_{C}.$ We show that the all-pairs shortest path problem for a directed graph $G$ on $n$ vertices with nonnegative real weights and adjacency matrix $A_G$ can be solved by a combinatorial randomized algorithm in time $$\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}})$$ As a corollary, we conclude that the transitive closure of a directed graph $G$ can be computed by a combinatorial randomized algorithm in the aforementioned time. $\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}})$ We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time $\widetilde{O}(n^{2.75})$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call