Abstract

In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPFT). Further, we derive the Parseval formula and the Riemann–Lebesgue lemma using this transform. Furthermore, we formulate two important inequalities (sharp Pitt’s and sharp Hausdorff–Young’s inequalities) and three main uncertainty principles (logarithmic, Donoho–Stark’s, and Heisenberg’s uncertainty principles) for the OQPFT. To complete our investigation, we construct three elementary examples of signal theory with graphical interpretations to illustrate the use of OQPFT and discuss their particular cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.