Abstract

Recent high-resolution synchrotron X-ray diffraction experiments (Kalkan et al., 2012) investigated bulk modulus and compressibility of high purity YbB2 and found that its compressibility can be compared even to that of diamond. In this paper we investigate the structural, compressibility and electronic properties of rare-earth YbB2 using density functional theory to illuminate the nature of its low compressibility and anisotropic elasticity. The calculated results are in agreement with the available theoretical and experimental data and confirm YbB2 as a hard material. The nature of YbB2 hardness and low compressibility is revealed by analyses of its electronic and directional bonding properties: it lies in very strong in-layer and strong enough between-layer bonds. The isotropic bulk modulus, shear modulus, Young’s modulus, elastic anisotropy, wave velocities and Debye temperature of YbB2, under ambient and pressures up to 300GPa are also discussed. Pressure induces expected behavior in most of these properties (monotonic increase), except in elastic constant c44, which softens and could lead to elastic instability. Furthermore, anisotropic factors, which are very different at zero pressure, give similar values at the pressure of 300GPa, closing the gap between compressional and shear anisotropy. Ductility unexpectedly increases with pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.