Abstract
A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young’s modulus, and Poisson’s ratio for ideal polycrystalline TiSi2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young’s modulus for single crystal TiSi2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.